
Performance Analysis of the SiCortex SC072

Brian J. Martin, Andrew J. Leiker, James H. Laros III and Doug W. Doerfler
Sandia National Laboratories

Albuquerque, NM

Abstract

The world of High Performance Computing (HPC) has seen a major
shift towards commodity clusters in the last 10 years. A new company,
SiCortex, has set out to break this trend. They have created what they
claim to be a balanced cluster which makes use of low-power MIPS pro-
cessors and a custom interconnect in an effort to avoid many of the bottle-
necks plaguing most modern clusters. In this paper, we reveal the results
of preliminary benchmarking of one of their systems, the SC072. First,
we ran a collection of microbenchmarks to characterize the performance
of interprocessor communication. Next, we ran some real applications
relevant to high performance computing and compared performance and
scalability to a typical commodity cluster. Lastly, we examine and com-
pare the performance per watt of the SiCortex system to a commodity
cluster.

1 Introduction

Recently, the most popular high performance computing solution has been the
commodity cluster, which employs a large number of commodity processors
linked together with a commercially available interconnect. This trend has
largely been fed by high performance, low priced processors available for the
personal computing market, as well as the advancement of a variety of open
source software. SiCortex [5], a relatively new entrant in the HPC market,
recently introduced a line of all-in-one clusters. They seek to avoid the ineffi-
ciencies that arise from clustering a large number of commodity parts not built
for high performance computing. SiCortex claims to be the first company to
engineer a cluster “from the silicon up” to create a balanced system, balancing
processor speed with power consumption and communication speed in order to
maximize application performance per dollar, per watt, and per square foot [11].
We benchmarked the smallest system in the lineup, the SC072(“Catapult”), a
72 processor machine with the form factor of a typical desktop tower. Although
the SC072 is not their largest cluster, it is representative of their unique archi-
tecture and design philosophies. In this paper we analyze the performance of
the SC072 on a series of micro-benchmarks and compare the application per-
formance and scalability of the SC072 with a typical commodity cluster. To
characterize the communication performance of the interconnect, we ran a se-
ries of microbenchmarks, both from the Pallas suite and Sandia. In addition,

1

2

we employed several applications to reveal performance and scalability of the
SC072 and contrast between the SiCortex system and a commodity cluster. We
analyzed the data gathered from these applications in several different ways,
including an examination of the claims made by SiCortex regarding better per-
formance per watt compared to a typical commodity cluster. Section 2 outlines
previous work done in this area. Section 3 discusses the architecture of the
SC072 and what makes it unique as well as contrasts it with a commodity clus-
ter. A discussion of the microbenchmarking tools used takes place in section 4,
and a review of the applications used to measure performance and scalability
is covered in section 5. Results are presented and analyzed in sections 6 and 7,
and a look at the performance per watt takes place in section 8. Our conclusions
based on the data collected are presented in section 9.

2 Related Work

Preliminary analysis of the SiCortex systems has mainly been performed by the
engineers at SiCortex, due in part to their recent entrance into the HPC market.
Publications and technical summaries provided by SiCortex can be found in a
series of white papers [6]. In addition, analysis of the zero-copy remote direct
memory access (RDMA) implementation has been done by SiCortex through
the use of HPCC RandomRing and Pingpong benchmarks [13]. Other than the
RDMA analysis done by SiCortex and a few published white papers, analysis
of the SiCortex systems has been largely non-existent. Therefore, this paper
strives to provide an accurate and unbiased performance analysis of the SiCortex
systems.

Table 1: Test Platform Summary

System SiCortex SC072 Generic Commodity
Cluster

Processor 500 MHz MIPS64 2.2 GHz AMD Opteron
Processor x86-64

Single Core Peak Float-
ing Point Rate

1 GFLOPS 4.4 GFLOPS

Interconnect Custom Myricom Myri10G
Interconnect Topology Degree-3 Kautz Graph Clos
Compiler PathScale version 3 Gnu Compiler Collection

3.4.3
Power Consumption per
Socket

15 Watts 85.3 Watts

MPI Implementation MPICH2 MPICH-MX

3

3 Architecture

The SiCortex SC072 resides in a desk-side case, plugs into a typical 100-120V
electrical outlet, and draws less than 300W of power. On the inside, however,
it houses twelve compute nodes, each of which is a six-way symmetric multipro-
cessor, containing six low-power 500 MHz 64-bit MIPS R© processor cores. Each
core has a peak double precision floating-point rate of 1GFLOPS, giving the en-
tire system 72 GFLOPS of peak performance [11]. To support these processors,
the system houses 48GB of memory. One of the defining features of the SiCor-
tex line of clusters is their unique interconnect [12]. The fabric topology in the
SiCortex is a unique system based on a degree-3 directed Kautz graph [10]. This
Kautz topology means that the diameter of the network grows logarithmically
with the number of nodes even as the degree of the network remains fixed. The
fabric links can support large message bandwidth of 2GBytes/second, and since
there are a total of six fabric links per node, three exit links and three entrance
links, bandwidth between nodes is up to 6Gbytes/second. The SC072 runs a
custom build of Linux on each of it’s compute nodes, placing it on equal footing
with most commodity clusters in the availability of many open source software
solutions and expertise with the system. For message passing, the SiCortex in-
cludes a custom message passing interface (MPI) implementation which is based
on MPICH2 and optimized for the architecture. RDMA protocol takes effect at
message sizes greater than 1024 bytes, and an MPI send-receive implementation
is used for message transfers below 1024 bytes. The RDMA is essentially imple-
mented through the DMA Engine; it is one of three interconnect components.
SiCortex includes several compilers available for use on their system, including
the PathScale and GNU compiler suites, both containing C, C++ and FOR-
TRAN compilers. All applications in this paper used the PathScale compiler
suite, as it is optimized to the SiCortex architecture. The resource management
was taken care of on the SC072 through use of the Simple Linux Utility for
Resource Management (SLURM) with the default production settings.

The cluster we used in comparison to the SiCortex is a typical commodity
cluster which uses 256 2.2 GHz AMD Opteron processors linked together by a
Myrinet network in a Clos topology. For all of the data gathered, this cluster
was limited to 72 cores or less in order to provide a core-to-core comparison
between the two systems. The job management on this cluster was handled by
the Portable Batch System(PBS) in a production environment.

4 Microbenchmark Overview

In our analysis of the SiCortex system, several microbenchmarks were used
to characterize SiCortex’s unique communication system. Of the microbench-
marks, two were developed at Sandia National Laboratories and three were
obtained from the Pallas Microbenchmark tool suite. A brief description of
each is presented below.

4

4.1 Pallas Microbenchmarks

The Pallas microbenchmarks (version 2.2.1) are a suite of tools capable of
characterizing the message passing interconnect on high performance comput-
ers. They include point-to-point, collective, and parallel transfer benchmarks.
We utilized the pingpong, allreduce, and sendrecv benchmarks as they are used
extensively in Sandia applications. Performance analysis for point-to-point com-
munications was accomplished with the pingpong microbenchmark, which mea-
sures the startup and throughput as a message is sent between two proces-
sors. MPI Send() and MPI Recv(), blocking communication functions, form
the bulk of the pingpong microbenchmark. The allreduce microbenchmark is a
collective benchmark that measures the average time to reduce a vector with
MPI Allreduce(). Lastly, the sendrecv tool was chosen as the parallel transfer
benchmark. A chain like communication pattern and MPI Sendrecv() are the
underpinnings of the sendrecv tools analysis capabilities. Its bidirectional band-
width results characterize the interconnects bandwidth capabilities for commu-
nication intensive work.

4.2 Sandia Microbenchmarks

Analysis performed on the SiCortex communication system with Sandia
based microbenchmarks was done through the use of the Host Processor Over-
head (HPO) analysis program [1] and a modified streaming analysis program;
both benchmarks were originally developed at Sandia. The HPO microbench-
mark provides a picture of the total overhead and application availability on
a single processor while communication is taking place. Overhead is the total
processor time spent on MPI related tasks during communication. Application
availability, on the other hand, is the percentage of time available for compu-
tational work during communication. As noted in citation [8], high application
availability and low overhead can remedy the negative affects of a high latency,
low bandwidth interconnect. MPI Isend() and MPI Irecv(), both non-blocking,
allow communication and application work to overlap in the HPO analysis,
thereby producing a realistic estimate of MPI related overhead for the send and
receive calls. The final microbenchmark used for analysis was the streaming
bidirectional microbenchmark. It is much like the sendrecv benchmark; how-
ever, it characterizes the interconnect somewhat differently and gives a much
better estimate of bisection bandwidth. It utilizes the MPI Sendrecv() and
floods the fabric links with messages between processes for one second. Bisec-
tion bandwidth is then found based upon the total number of bytes sent in that
time period.

5 Application Overview

For performance analysis and scalability, three applications were used to com-
pare the SiCortex to a generic commodity cluster. They are described below.

5

5.1 HPCCG: Simple Conjugate Gradient Benchmark Code

The HPCCG micro-application is a simple partial differential equation solver
and preconditioned conjugate gradient solver that solves a linear system on a
beam-shaped domain. It generates a 27-point finite difference matrix for a
3D chimney domain on an arbitrary number of processors. This open source
software was designed to be scalable up to thousands of processors, making it a
sound software choice for analyzing scalability of a system. This software was
designed to be a weak scaling code, meaning that, given the same input, the
problem size doubles as the number of processors doubles. Benchmarking data
in this paper was taken with version 0.5 of HPCCG, using the reported total
MFLOPS from the output of the program. HPCCG is licensed under the GNU
LGPL [2].

5.2 phdMesh

phdMesh is a micro-application designed to perform parallel geometric prox-
imity search, dynamic load balancing, parallel synchronization, and other com-
mon operations on parallel, heterogeneous and dynamic unstructured meshes.
The data analyzed was taken from the amount of time that the program spent
performing the parallel geometric search per step [4].

5.3 LAMMPS

LAMMPS is an open source molecular dynamics simulator available un-
der the GNU general public license. The May 21, 2008 release of LAMMPS
is the version being used for our analysis [3]. Within the LAMMPS package,
atomic and molecular models constitute the principal scientific tools; however,
the package also has application benchmarks incorporated. The application
benchmarks originate from the models themselves. As the models scale linearly,
the benchmarks prove to be excellent scaling analysis tools for high performance
computers. Of the five application benchmarks available for performance anal-
ysis, we chose two, the Lennard Jones liquid benchmark and the Rhodospin
Protein benchmark. The two benchmarks were chosen for the dissimilarity in
simulation methods and the difference in computational expense, as Rhodospin
Protein is more computational and communication intensive. Both benchmarks
allow for weak and strong scaling. The combination of benchmark and scaling
type provide various pictures of the systems scalability, such as characteristics of
the system’s communication or computation scalability. Or more importantly,
the overall balance of the system’s scaling.

6 Microbenchmark Results

SiCortex microbenchmark results were attained through the treatment of the
SiCortex cluster as a non-production environment, allowing microbenchmarking
to take place without outside influence. In addition, all core allocations were

6

 0

 200

 400

 600

 800

 1000

 1200

 64 256 1024 4096 16384 65536 262144 1.04858e+06

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

Message Size (Bytes)

Pingpong Bandwidth
(Unidirectional Bandwidth)

Off-Node
On-Node

Figure 1: Pingpong Microbenchmark Bandwidth

handled by the SiCortex default implementation of SLURM, and all results are
the average of multiple message transmissions.

6.1 Pingpong Results

Latency and bandwidth data are presented for both on and off node two
processor core allocations. Both the on and off node results correlate with pre-
vious work published by SiCortex. However, previous work done by SiCortex
exhibited erratic behavior at a message size of 64kB, see citation [13]; however,
our results indicate SiCortex improved 64kB characteristics. For a message size
of 1024 bytes, figures 6.1 and 6.1 demonstrate increased bandwidth perfor-
mance and decreased latency. Performance changes at 1024 bytes are common
among other communication systems, but the MPI to RDMA protocol change
at this stage warrants inquiry as to its effect on the SiCortex’s performance. Up
to a 512 byte message size, latency values are under five microseconds, which is
considerably good. Finally, on-node bandwidth performance is lower than off-
node bandwidth performance; this can be attributed to the overload of on-node
system memory due to the significant number of reads and writes, as noted in
citation [13].

6.2 Sendrecv Results

The sendrecv benchmark was run both on and off node. Off-node jobs ranged
from two to twelve nodes, where on-node jobs ranged from two to six cores. Fig-

7

 0

 5

 10

 15

 20

 25

 4 16 64 256 1024 4096

T
im

e
(u

se
c)

Message Size (Bytes)

Pingpong Latency

Off-Node
On-Node

Figure 2: Pingpong Microbenchmark Latency

ure 6.2 shows the results obtained from the two and twelve off-node jobs. Other
node allocation results fall somewhere in-between these two lines. For all off-
node allocation sizes, the distribution of messages across multiple fabric-links,
rather than one, brought about an increase in performance at a message size
greater than 64kB. Boosts in performance at this stage can be directly attributed
to MPI protocol change; messages greater than 64kB are spread across fabric
links in partitions of 64kB, while messages 64 kB and smaller are passed on one
fabric-link [13]. Interestingly, achievement of maximum bidirectional bandwidth
for off-node jobs could only be obtained with message sizes greater than 4 MB.
Lastly, figure 6.2 reveals an increase in the number of cores for an on-node job
produces a predictable reduction in bidirectional bandwidth.

6.3 Allreduce Results

Allreduce results are presented for power-of-two core allocations up to 64
cores, along with a 40 core job. Power-of-two core allocations exhibited excellent
performance, while non-power-of-two core allocations did not. For example, the
40 core allocation performed 17000 microseconds slower than a 64 core allocation
at a vector reduction size of 16 MBytes. The prime factor for this deviation is the
inherent dependence of collective communication algorithms on power-of-two
allocations. Consequently, core allocation size plays a key role in performance
and a smaller job size doesn’t necessarily signify optimum timings, as the 40 core
allocation demonstrates. Figure 5 demonstrates the power-of-two dependence

8

 0

 500

 1000

 1500

 2000

 2500

 3000

1024 4096 1.638e+04 6.554e+04 2.621e+05 1.049e+06 4.194e+06 1.678e+07

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

Message Size (Bytes)

Sendrecv Microbenchmark
(Off-Node Bidirectional Bandwidth)

Off-Node (2 Nodes)
Off-Node (12 Nodes)

Figure 3: Sendrecv Microbenchmark Off-Node Performance

 0

 100

 200

 300

 400

 500

 600

 700

1024 4096 1.638e+04 6.554e+04 2.621e+05 1.049e+06 4.194e+06

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

Message Size (Bytes)

Sendrecv Microbenchmark
(On-Node Bidirectional Bandwidth)

On-Node (2 Cores)
On-Node (4 Cores)
On-Node (6 Cores)

Figure 4: Sendrecv Microbenchmark On-Node Performance

9

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0 2e+06 4e+06 6e+06 8e+06 1e+07

T
im

e
(u

se
c)

Message Size (Bytes)

Allreduce Microbenchmark

2 Processors
4 Processors
8 Processors

16 Processors
32 Processors
40 Processors
64 Processors

Figure 5: Allreduce Microbenchmark Results

for collective communications on the Sicortex interconnect. Finally, increased
performance with greater core allocations indicates the SiCortex’s scalability for
communication intensive programs.

6.4 Host Processor Overhead

Overhead and application availability results were obtained for both an MPI
Send and Receive function calls. Overhead data shown in figure 6.4, for both
function calls, behaves linearly. In comparison to other systems, overhead per-
formance on the Sicortex system is marginal at best [9]. Application availability
for MPI Isend in figure 6.4 exhibits erratic behavior, including a plunge at 1024
Bytes and a peak availability, 94.4%, at 512 KBytes. The unpredictable nature
of the MPI Isend application availability induced questions regarding the va-
lidity of the results; however, our analysis was performed multiple times and
deviations were so small that results proved to be valid. Furthermore, a depen-
dence on the RDMA protocol change is present at 1024 Bytes. In contrast to
MPI Isend, application availability for MPI Irecv is unfavorable for all message
sizes. Overall, high overhead and low application availability are common for
message transfers greater than 1 MB, but performance yields below 1 MB are
generally only good for the MPI Isend function.

10

 0

 500

 1000

 1500

 2000

 2500

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06 3.5e+06 4e+06 4.5e+06

T
im

e
(u

se
c)

Message Size (byte)

Overhead

MPI_Irecv
MPI_Isend

Figure 6: Host Processor Overhead Microbenchmark Results: Overhead

 0

 20

 40

 60

 80

 100

 1 32 1024 32768 1.04858e+06

%
 A

va
ila

bl
e

Message Size (Bytes)

Application Availability

MPI_Isend
MPI_IRecv

Figure 7: Host Processor Overhead Microbenchmark Results: Application
Availability

11

 0

 500

 1000

 1500

 2000

 2500

 3000

1024 4096 1.638e+04 6.554e+04 2.621e+05 1.049e+06 4.194e+06 1.678e+07

B
an

dw
id

th
 (

M
B

yt
es

/s
ec

)

Message Size (Bytes)

Bisection Bandwidth

12 Nodes
2 Nodes

Figure 8: Bisection Bandwidth Microbenchmark Results

6.5 Bisection Bandwidth

The bisection bandwidth microbenchmark shown in figure 8 performed
similarly to the Pallas sendrecv microbenchmark. As expected, the bisection
bandwidth microbenchmark obtained a greater peak bidirectional bandwidth,
a consistent 2.95 Gbytes to a sendrecv bandwidth of 2.86 GBytes. These band-
width values place the interconnects bidirectional bandwidth capabilities under
3 GBytes, which is noteworthy. Lastly, maximum bandwidth was only obtained
at message sizes greater than 4 MBytes, which also occurred in the sendrecv pro-
gram; this tendency to not obtain high bandwidth until extremely large message
sizes is not common among other interconnects.

7 Application Results

All applications presented in this section were tested in conditions consistent
with a production environment. All applications were compiled with a high level
of optimization consistent on both of the two platforms presented. All processor
to MPI task core allocations were done using SLURM on the SiCortex system,
and PBS on the x86 cluster.

12

 0

 5000

 10000

 15000

 20000

 25000

 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 (
M

F
LO

P
S

)

Number of Processors

HPCCG Weak Scaling on SiCortex vs. x86_64 cluster

x86_64 Cluster
SiCortex

Figure 9: HPCCG Weak Scaling: Raw Data

7.1 HPCCG Results

A weak scaling study was accomplished using HPCCG. A problem size of
64 x 64 x 64 elements for each core was used. For each data point HPCCG was
executed three times, and the results were averaged and plotted. The error bars
on the plots represent the high and low point. Note the error bars are barely
visible on the charts, showing consistency in the results.

Figure 7.1 shows how the clusters performed on HPCCG. It is clear that
as far as performance goes, the Opteron cluster outperforms the SiCortex ma-
chine due to the large difference in processor speed. However, as we can see
in figure 7.1, the SiCortex shows better scalability up to 72 cores, maintaining
over 95% efficiency, whereas the Opteron cluster falls to 88% efficiency. It ap-
pears the balanced approach taken by SiCortex helps it mantain performance
efficiency up to full capacity for HPCCG.

7.2 phdMesh Results

For phdMesh, both weak and strong scaling studies were accomplished. The
data gathered for analysis comes from the amount of time performing a parallel
geometric search per step. For strong scaling, a 4x8x4 mesh of 128 gears was
used. Weak scaling was done with 2 gears per core arranged in an appropriate
3D mesh. For each data point, phdMesh was run three times and the average
was plotted, with the high and low showing up as error bars on the plot. Again,

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64 128

P
er

fo
rm

an
ce

 E
ffi

ci
en

cy

Number of Processors

HPCCG Weak Scaling on SiCortex vs. x86_64 cluster

x86_64 Cluster
SiCortex

Figure 10: HPCCG Weak Scaling: Raw Data

the error bars are barely visible on the plot, showing consistent results.
In strong scaling, as we can see in Fig. 7.2, the x86 cluster completed the task

significantly faster due to it’s greater per-core performance. Unlike HPCCG,
though, the scaling was almost identical on the Opteron cluster as the SiCortex
system. This can be seen in Fig. 7.2(the plots are almost identical). Note that
in Fig. 7.2, the graph is normalized so for each of the systems ’1’ represents the
amount of time one core took searching, and all other times are relative.

Similar results to those seen in the strong scaling study are seen in the
weak scaling study. The Opteron cluster performs better than the SiCortex
in general, simply because of the difference in raw computational ability per
processor. Again, the scaling of the two systems are nearly identical, as seen in
Figure 7.2.

On phdMesh, unlike HPCCG, we see almost identical scalability between
the x86 cluster and the SiCortex cluster up to 64 cores. Both systems scale
fairly well and consistently up to 64 cores with phdMesh.

7.3 LAMMPS Results

Strong and Weak Scaling results are presented for the two LAMMPS bench-
marks chosen, Lennard Jones and Rhodospin Protein. Three runs were utilized
on both clusters in all LAMMPS evaluations; the final result is the normaliza-
tion of the minimum time obtained for each run at each core allocation size, with
normalization based on single core run times. Power-of-two core allocations up

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 2 4 8 16 32 64

T
im

e
S

ea
rc

hi
ng

 p
er

 S
te

p
(s

ec
on

ds
)

Number of Processors

Time Searching per Step phdMesh with 128 Gears

x86_64 Cluster
SiCortex

Figure 11: phdMesh Strong Scaling: Raw Data

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 4 8 16 32 64

N
or

m
al

iz
ed

 T
im

e
S

ea
rc

hi
ng

 p
er

 S
te

p

Number of Processors

Time Searching per Step phdMesh with 128 Gears

x86_64 Cluster
SiCortex

Figure 12: phdMesh Strong Scaling: Normalized Data

15

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 1 2 4 8 16 32 64

T
im

e
S

ea
rc

hi
ng

/S
te

p
(s

ec
on

ds
)

Number of Processors

Time Searching per step for phdMesh With 2 Gears Per Processor

x86_64 Cluster
SiCortex

Figure 13: phdMesh Weak Scaling: Raw Data

 0

 1

 2

 3

 4

 5

 6

 1 2 4 8 16 32 64

T
im

e
S

ea
rc

hi
ng

/S
te

p
C

om
pa

re
d

to
 S

in
gl

e
P

ro
ce

ss
or

Number of Processors

Normalized Time Searching per step for phdMesh With 2 Gears Per Processor

x86_64 Cluster
SiCortex

Figure 14: phdMesh Weak Scaling: Normalized Data

16

 0

 100

 200

 300

 400

 500

 600

 700

 1 2 4 8 16 32 64

T
im

e
(s

ec
.)

Number of Processors

Lennard Jones Strong Scaling
(Raw)

Sicortex
x86_64

Figure 15: Lennard Jones Strong Scaling: Raw Data

to 64 processors were selected as the job sizes.
Problem size was set at 32000 atoms for Rhodospin Protein strong scaling.

The same problem size was originally used for Lennard Jones strong scaling
analysis; however, this problem size proved to be too small a problem for the
Linux cluster which demonstrated poor and uncharacteristic performance. To
combat the problem, a problem size of 4194304 atoms was implemented for LJ,
“Lennard Jones”, strong scaling on both clusters. Figure 7.3 demonstrates
the SiCortex’s greater scalability versus those of a generic Linux cluster for LJ
strong scaling, a non-computationally intensive benchmark. Correspondingly,
the computationally intensive Rhodo, ”Rhodospin Protein”, strong scaling fa-
vored the faster generic Linux cluster for small core allocations; however, scaling
performance on the generic cluster begins to fall as core allocations grow larger,
which is shown in figure 7.3. Not to our amazement, the SiCortex scaled better
than the generic Linux cluster for non-computationally intensive weak scaling
(LJ microbenchmark) and the generic Linux cluster demonstrated good scaling
for the computationally intensive weak scaling (Rhodo microbenchmark), see
figures 7.3, 7.3. Weak scaling, in this instance, was performed by increasing
the problem size proportionally to the number of processors allocated. Although
the generic cluster clock times are consistently lower than the SiCortex for weak
scaling, the SiCortex nearly catches the generic cluster at larger allocation sizes
for strong scaling. Combined, the weak and strong scaling results demonstrate
a tendency for the SiCortex to scale better for less computationally intensive
programs.

17

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processors

Lennard Jones Strong Scaling
(Normalized)

Sicortex
x86_64

Figure 16: Lennard Jones Strong Scaling: Normalized Data

 0

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16 32 64

T
im

e
(s

ec
.)

Number of Processors

Rhodospin Protein Strong Scaling
(Raw)

Sicortex
x86_64

Figure 17: Rhodospin Protein Strong Scaling: Raw Data

18

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processors

Rhodospin Protein Strong Scaling
(Normalized)

Sicortex
x86_64

Figure 18: Rhodospin Protein Strong Scaling: Normalized Data

 0

 10

 20

 30

 40

 50

 60

 1 2 4 8 16 32 64

T
im

e
(s

ec
.)

Number of Processors

Lennard Jones Weak Scaling
(Raw)

Sicortex
x86_64

Figure 19: Lennard Jones Weak Scaling: Raw Data

19

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processors

Lennard Jones Weak Scaling
(Normalized)

Sicortex
x86_64

Figure 20: Lennard Jones Weak Scaling: Normalized Data

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 4 8 16 32 64

T
im

e
(s

ec
.)

Number of Processors

Rhodospin Protein Weak Scaling
(Raw)

Sicortex
x86_64

Figure 21: Rhodospin Protein Weak Scaling: Raw Data

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1 2 4 8 16 32 64

P
ar

al
le

l E
ffi

ci
en

cy

Number of Processors

Rhodospin Protein Weak Scaling
(Normalized)

Sicortex
x86_64

Figure 22: Rhodospin Protein Weak Scaling: Normalized Data

8 Performance per Watt

The motivation behind the use of the underpowered MIPS64 processors found
in SiCortex systems is the fact that they take a low amount of power to run and
provide a very high performance to watt ratio. Each processor in a SiCortex
system consumes less than one watt, and each six-processor node, which includes
memory and other components for those six processors, consumes less than
15 watts. In comparison, the commodity cluster’s Opteron core used in this
paper requires 85.3 Watts. Peak performance per watt on SiCortex systems
is 322 MFLOPS per watt, an impressive number. In comparison, the average
performance per watt of a system on the July 2008 version of the top500 list is
122 MFLOPS per watt [7].

As the performance per watt data for the x86 cluster was unavailable, the
data presented here is based on the wattage of a single socket and the perfor-
mance of the 4 applications presented in section 7. Wattage for the x86 cluster
socket encompasses the NIC, memory (4 DIMMS), and the Opteron processor.
The NIC and memory power contributions are estimates based upon previous
work done by one of the authors; altogether, the generic cluster socket consumes
approximately 115 watts. For the SiCortex, one socket power consumption is
15 watts, which is the equivalent of one node. Weak and strong scaling 64 core
runs were used for our analysis. With 64 core allocations, the x86 cluster used
64 sockets and the SiCortex used 11 sockets. Considering power analysis re-
sults, it is quite apparent the energy consumption for the SiCortex system is

21

 10

 100

 1000

 10000

 100000

Lennard JonesRhodospin ProteinphdMesh

R
un

tim
e

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

)

Micro-Application

Strong Scaling Power Analysis
(64 Cores)

x86_64
SiCortex

Figure 23: x86 64-SiCortex Strong Scaling Power Analysis

 10

 100

 1000

 10000

 100000

 1e+06

Lennard JonesRhodospin ProteinphdMeshHPCCG

R
un

tim
e

E
ne

rg
y

C
on

su
m

pt
io

n
(J

ou
le

)

Micro-Application

Weak Scaling Power Analysis
(64 Cores)

x86_64
SiCortex

Figure 24: x86 64 - SiCortex Weak Scaling Power Analysis

22

low compared to the x86 cluster. It should also be noted that the SiCortex run
time for equivalent core allocations was much higher. This would normally raise
a dilemma as to whether or not the decreased power consumption is worth the
increase in run time; however, the core allocation size on the SiCortex can be
raised to levels that compete with lower allocation sizes on generic systems and
still consume less power.

9 Conclusions

In order for SiCortex to be competitive in the HPC using the less computa-
tionally powerful MIPS processors, they need to show that the amount of cores
needed to make up for computational ability in a large system will not cause
a steep drop-off in performance. The results gathered largely reflect the claims
that the system scales well to a reasonable number of processors. The mi-
crobenchmarks show that the communication system is capable of low-latency,
high-bandwith data transfer on par with many popular commercial intercon-
nects. This interconnect capability coupled with the slower clock rate of the
MIPS processors provide more balance than is typically seen in a commodity
cluster, preventing many of the communication bottlenecks prevalent in the
world of high performance computing. The application benchmarks show us
that the system is consistently scalable to a reasonable number of nodes on all
applications tested. As a result, more of the advertised performance will be
used at a high number of nodes. This was reflected in the fact that for all of the
applications which analysis was performed on, performance efficiency per core
never dipped below 87%. We compared these performance numbers to those
of a typical commodity cluster in production, and we saw some advantages in
scalability for the SiCortex system. The total performance of the commodity
cluster’s high-powered Opterons, however, outpaced the slower MIPS proces-
sors in the SiCortex. In some applications the commodity cluster showed the
same or greater performance efficiency at a high number of processors than the
SiCortex, but the SiCortex showed consistent scalability across all applications.
The performance efficiency of the commodity cluster dropped as low as 51%
on an appplication benchmarking study. In terms of performance per watt,
we saw a huge advantage for the SiCortex, a big concern recently in the world
of HPC due to operating costs and environmental impacts. In terms of pure
processing power per node, the SiCortex MIPS64 nodes do not compete with
today’s modern consumer processors. However, our results demonstrate that
their more balanced approach to HPC leads to consistent scalabilty and greater
performance per watt than a typical commodity cluster.

10 Acknowledgements

We would like to express our gratitude to the Computer Science Research In-
stitute (CSRI), the Student Internship Program (SIP), and our manager James
Ang. In addition, we greatly appreciate the engineers at SiCortex for their help

23

in preparing the SC072 for analysis.

References

[1] Host processor overhead (hpo). Available
http://www.cs.sandia.gov/smb/overhead.html.

[2] Hpccg. Available http://software.sandia.gov/mantevo/download.html.

[3] Lammps molecular dynamics simulator. Available
http://www.lammps.sandia.gov.

[4] phdmesh. Available http://www.cs.sandia.gov/ maherou/.

[5] Sicortex website. Available http://www.sicortex.com.

[6] Sicortex whitepapers. Available http://www.sicortex.com/products/white papers.

[7] Top 500 computer sites. Available http://www.top500.org.

[8] D. Doerfler, An analsysis of the pathscale inc. infiniband host channel
adapter, infinipath, Tech. Rep. SAND2005-5199, Sandia National Labora-
tories, August 2005.

[9] D. Doerfler and R. Brightwell, Measuring mpi send and receive
overhead and application availability in high performance network inter-
faces, in EuroPVM/MPI, 2006.

[10] W. Kautz, “bounds on directed (d,k) graphs,” theory of cellular logic net-
works and machines, Tech. Rep. AFCRL-68-0668, Air Force Cambridge
Research Laboratory, 1968. pp. 20-28.

[11] M. Reilly, L. Stewart, J. Leonard, and D. Gin-
gold, Sicortex technical summary, April 2008. Available
http://www.sicortex.com/whitepapers/sicortex-tech summary.pdf.

[12] L. Stewart and D. Gingold, A new generation of cluster interconnect,
April 2008. Available http://www.sicortex.com/whitepapers/sicortex-
cluster interconnect.pdf.

[13] L. Stewart, D. Gingold, J. Leonard, and P. Watkins, Rdma in the
sicortex cluster systems, in EuroPVM/MPI, 2007.

